PLAGIARISM DETECTION IN SOURCE CODE
AND TEXT BASED ASSIGNMENT SUBMISSIONS
INCORPORATING QUANTUM APPROACH

Project Supervisor:
Prof. Dr. Shashidhar Ram Joshi

Outline of
topics

e Plagiarism detection in electronic text
assignments

e Plagiarism detection in programming
assignments

e Quantum approach of classification

e Web application development and
system workflow

Plagiarism Detection In
electronic text assignments

Types of
plagiarism

Verbatim plagiarism

Certain portion of text from the source documents are
directly copied into the suspicious document.

Random obfuscation

It is done by performing a sequence of random text
operations such as shuffling, adding, deleting, and
replacing words or short phrases at random.

Translation obfuscation

Passage is passed through a sequence of language
translators and finally converted to English.

Summary obfuscation

Certain portion of text in the source documents is
summarized and added to the suspicious document.

Framework for Text Plagiarism Detection

Collection of\r Source , 1 Text

documents . Top 5 alignment ‘ ' SR
retrieval . . Post Plagiarised
using BM25 - candidate P using BERT =B processing g passages
. documents based L J .
algorithm L , .
\) - embeddings |

Suspicious
document

Outputs list of tuples (Ssusp, Ssrc) called
seeds.

Text Alignment

Compares source and suspicious
documents on the sentence level
and form contiguous passages
of text

Forms larger contiguous fragments

(clusters) of text which are adjacent to
each other

Removes overlapping and short plagiarism
cases.

Seeding stage of Text Alignment

Suspicious
documents
Source
documents

Tokenize Into
sentences
and

remove/merge
small
sentences

Sentence
BERT

Suspicious
==p-| documents
embeddings

sSource
documents
embeddings

Added to
FAISS index

Perform
similarity
search

List of seeds
(Ssusp, Ssrc)

EIResult on PAN 2014 training corpus

Our result
Obfuscation PlagDet | Precision Granularity | Smmilarity Threshold

None(Verbatim) 0.947 0.915 1.00246 _

0639 L0164
Translation 019
Summary 0.676 0.775 1.044

Result of best performing approach in PAN 2014 competition

"~ Obfuscation | PlagDet | Precision | Recall | Granularity |
10000
0000
1000
10434

Reference: Potthast, M. et al. (2010). An evaluation framework for plagiarism detection. COLING ’10: Proceedings of the 23rd International
Conference on Computational Linguistics: Posters, 9971005.

Plagdet score for ROBERTa and distiIBERT

Plagdet scaore

o
[
LA
i
i)
=
=
L
(=

= HoBERTa on verbatim plagiarism | — RoBERTa on random obfuscation
DistllBERT on verbatim plagiarism DistilBERT on random obfuscation

! ! ! ! ! ! ! -
055 060 O©O65 O©070 O75 080 085 090 l}_'ljﬂ I}_'I;.'S I}.llliﬂ- I}.!ES I}.lH] 075
Cosine similarity threshold Cosine similarity threshold

10

Plagdet score for ROBERTa and distilBERT

Plagdet score

[
i
LA
i
i)
=
h
L
(=R

= HRoBERTa on summary obfuscation

— RoBERTa on translation obfuscation
DistilBERT on summary obfuscation

DistilBERT on translation obfuscation

I I I I ! ! ! I
0ed O65 O70 075 080 085 090 0.50 (.55 0.60 065 0.70
Cosine similarity threshold Cosine similarity threshold

Our result on PAN 2014 test corpus

Obfuscation PlagDet Granularity
None(Verbatim) | 0.799 0.693 0.946 1.00253
Random 0.648 0.771 0.568 1.01335

Translation 0.654 0.603 1.01116
Summary 0.508 | 0.993 1.05682

Improvement in running time of algorithm using FAISS

— Time without FAISS
Time with FAISS

LM
g
=
Ll
il
iLi
Ly
=
iLi
=
i
=

30 40
Document Pair Mumber

13

Plagiarism Detection In
Programming Assignments

5884 Assignment
pairs

Dataset / \

Non-

Plagiarized: olagiarized:
1262 pairs 4622 pairs

Dataset of programming_assignments

https://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-detection

Our Approach for Source Code
Plagiarism Detection

#include <stdio.h=>

int main(){
int x;
printf("Enter a number");
scanf("%d", x);
if (x == 0)
{printf("Example 1");} // Comment line

s Plagiarised

{
printf("Example 2")
}
}

Programming assignment 1 :> Xgboost Classifier

#include <stdio.h> / NOt plagiarised

/! Main function
int main(){
int x;
printf("Enter a number");
scanf("%d", x);
if (x == 0) /* Comment using multiline notation */
{printf("Example 1");} /f Comment line

el Relevant Features

printf("Example 2")
}
3

Programming assignment 2

Features Calculated

Similarity score

Score based on Karp-Rabin string
matching algorithm and Jaccard similarity.

Code style similarity

e Braces similarity
e Comment similarity
e Spaces and Newline similarity

Categorical value
according to similarity
score

Number of common lines

Total number of common lines in the
assignment pair excluding blank lines.

Number of unused variables

Static code analyzer cppcheck was used to
detect unused variables.

Number of unused functions

Static code analyzer cppcheck was used to
detect unused functions.

C/C++ code before and after replacing
variable names, function names and string

#include <stdio.h= i"t Fl,”| {
// Printing Fibonacci series 1"1,: N, rN' N-=0, N=1, N;
int main() { printf(555);

int i, n, t1 =8, t2 = 1, nextTerm: scanft (S55,&N) :

printf("Enter the number of terms) printf(s55);

scanf("%d", &n);

printf(“Fibonaccl Series: *); for (N = 1; N <= N; ++N) {
printf (555, N);

for (1 =1; 1 == n; ++1) { '
printf("sd, ", tl1); N =N+ N;
nextTerm = t1 + t2; N = N;
tl =12 N=N;
12 = nextTerm;

}

return ©;

B An example of braces and comment notation

Hinclude <stdio.h>

// Main function

int main(){
int x:
printf("Enter a number");
scanf("%d", x);

if (x == 0) f* Comment using multiline notation */
{printf("Example 1");} f/ Comment line
else

{

printf("Example 2")
1

Braces notation of above code is {2{11}3{4}4}4.
Comment notation of above code is STM3S2.

Visualization of Source Code
Features after PCA

Results

Xgboost

Class Label

Not plagarised o
Plagiarised >

SVM

Class Labe

Not plagiarised

Plagiarised

Bl Confusion Matrix Normalized by the
True labels

22

Quantum Approach of
Classification

Import Dataset

23

System
overview of

quantum
oased SVM
classification

PCA to find two
principal
components

circuit

Assign real quantum
computer as Assign quantum
backend. Wait if the simulator as backend
job gueue is full

Run guantum SVM
algorithm for
classification task

Accuracy(testset) : /b per cent
Run Time : 42.8 seconds

Results

Results obtained from Quantum
Based SVM model

Accuracy(testset) : /0 per cent
Run Time : 4.2 seconds

e Increased space complexity

Inferences frOm Simulating an n-bit quantum computer
RESU ItS requires to store about 2An bits of

information every instant
Explanation on why we got such

a surprising result as we
expected the run time for

quantum based model to be less * Increased time ComPIEX'ty

Implementation of quantum gates on
classical computer takes huge time
resources.

26

System Design

Overview of the system

<
|

child process 12. Python Recognizable

14. List Of Objects Model
— with plagiarism information——

as Response

‘ L Spawn a python

13. Plagiarism
Response

AT |
—

X,

Illl..li_
Reguest File system with
hon
9. Check Plagiarism F— Pyt

recognizable ML
Request model
¥

' ™, Response o
5. Save File

Heact Request
Frontend File system api to
Application |, 8 Saved file content | L g zaue File save file to server
_ y response
A

10. Plagiarism Check

1. Compile Cod
HReguest

‘- ™

4. Conzole

Output —] Create temporary

Response Ehﬂn:'ﬂ[a file and run in
i console

\T/ N y

3. Console Besponse

Frontend

Python - & PICK FROM FILE

print {("Helle, Python!™)

-

N test.txt p4

test file -PY UPLOAD FILE

File Name il PICK FILE » UPLOAD FILE

Console

Hello, Python!

Sample

Response for
/checkCodePlag

Sample Response for
/checkTextPlag

31

Tech Stack for
web application

React

for frontend

) Firebase

for frontend hosting

Node]S

for backend

nede

l.i Heroku
p

for compiler api hosting

adWwsS AWS

for plagiarism api hosting

32

Team Members

Bibek Mitesh
Timsina Pandey

Nishesh
Awale

